Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells.

نویسندگان

  • Hai Wei Jin
  • Sarah J L Flatters
  • Wen Hua Xiao
  • Howard L Mulhern
  • Gary J Bennett
چکیده

Prophylactic treatment with acetyl-L-carnitine (ALCAR) prevents the neuropathic pain syndrome that is evoked by the chemotherapeutic agent, paclitaxel. The paclitaxel-evoked pain syndrome is associated with degeneration of the intraepidermal terminal arbors of primary afferent neurons, with the activation of cutaneous Langerhans cells, and with an increased incidence of swollen and vacuolated axonal mitochondria in A-fibers and C-fibers. Previous work suggests that ALCAR is neuroprotective in other nerve injury models and that it improves mitochondrial dysfunction. Thus, we examined whether the prophylactic efficacy of ALCAR was associated with the prevention of intraepidermal terminal arbor degeneration, the inhibition of Langerhans cell activation, or the inhibition of swelling and vacuolation of axonal mitochondria. In animals with a confirmed ALCAR effect, we found no evidence of a neuroprotective effect on the paclitaxel-evoked degeneration of sensory terminal arbors or an inhibition of the paclitaxel-evoked activation of Langerhans cells. However, ALCAR treatment completely prevented the paclitaxel-evoked increase in the incidence of swollen and vacuolated C-fiber mitochondria, while having no effect on the paclitaxel-evoked changes in A-fiber mitochondria. Our results suggest that the efficacy of prophylactic ALCAR treatment against the paclitaxel-evoked pain may be related to a protective effect on C-fiber mitochondria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemotherapy-evoked neuropathic pain: Abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine.

Cancer patients treated with antimitotic drugs in the taxane and vinca alkaloid classes sometimes develop a chronic painful peripheral neuropathy whose cause is not understood. In animal models of painful peripheral neuropathy due to nerve trauma or diabetes there is obvious axonal degeneration accompanied by an abnormal incidence of spontaneous discharge in A-fiber and C-fiber nociceptors. But...

متن کامل

P152: Neurotoxicants and Mechanisms Neurodegenerative in Acrylamide

Many chemicals with broad industrial, pharmaceutical and agricultural application produce a neurotoxic syndrome in humans and experimental animals involving weight loss, skeletal muscle weakness and ataxia. Neurotoxicity is defined as a structural change or a functional alteration of the nervous system resulting from exposure to a chemical, biological or physical agent. Neurotoxicity including ...

متن کامل

Acetyl-l-carnitine in the treatment of painful antiretroviral toxic neuropathy in human immunodeficiency virus patients: an open label study.

Antiretroviral toxic neuropathy causes morbidity in human immunodeficiency virus (HIV) patients under dideoxynucleoside therapy, benefits only partially from medical therapy, and often leads to drug discontinuation. Proposed pathogeneses include a disorder of mitochondrial oxidative metabolism, eventually related to a reduction of mitochondrial DNA content, and interference with nerve growth fa...

متن کامل

Acetyl-L-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy.

This study examines the potential efficacy of acetyl-L-carnitine (ALC) to prevent and treat paclitaxel-induced pain. Rats received four intraperitoneal (i.p.) injections of 2 mg/kg paclitaxel on alternate days which, following a short delay induced marked mechanical hypersensitivity. Daily administration of ALC (50 mg/kg and 100 mg/kg; p.o.; concurrently with paclitaxel and for 14 days afterwar...

متن کامل

Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice

BACKGROUND Paclitaxel, a widely-used antineoplastic drug, produces a painful peripheral neuropathy that in rodents is associated with peripheral-nerve mitochondrial alterations. The sigma-1 receptor (σ1R) is a ligand-regulated molecular chaperone involved in mitochondrial calcium homeostasis and pain hypersensitivity. This receptor plays a key role in paclitaxel-induced neuropathic pain, but it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 210 1  شماره 

صفحات  -

تاریخ انتشار 2008